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Abstract

The problem of extensional wave propagation in a pre-stressed, incompressible, 4-ply symmetric layered structure

is considered. The high wave number behaviour of the harmonics is shown to fall into one of four distinct cases.
Each of these are examined in detail and appropriate asymptotic expansions, giving phase speed as a function of
wave number, are obtained. These are shown to provide excellent agreement with the numerical solution. A surface

wave front arising from the combined in¯uence of all harmonics is observed numerically. Corresponding plots of the
eigenfunctions con®rm that this is indeed a surface wave with the behaviour associated with each harmonic
remarkably sensitive to changes in wave number. This paper concludes with a comparison of extensional and
¯exural waves. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Primarily motivated by the increasing industrial application of laminated structures, theoretical study
of wave motion and vibration in layered media has been an area of considerable research activity in
recent years. In this paper we continue in the spirit of such studies and examine the e�ects of pre-stress
on small amplitude waves in layered media. Although stress is often induced in the manufacturing
process, by techniques such as fabrication, the type of scenario we envisage is one in which pre-stress
arises through the action of external forces. Problems involving the e�ect of pre-stress on waves in
bounded media was instigated initially in the context of surface waves by Hayes and Rivlin (1961) and
Flavin (1963). Additionally, and in the context of single layer plates, the e�ects of pre-stress have been
investigated recently by Ogden and Roxburgh (1993), Rogerson and Fu (1995).
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In this paper we speci®cally investigate the e�ect of pre-stress on small amplitude extensional waves in
symmetric 4-ply incompressible, elastic laminated structures. This work is presented in respect of the
most general appropriate strain energy function and as such will both generalise previous work,
Rogerson and Sandiford (1996), and o�er the corresponding analysis to a previously published work on
¯exural waves, see Rogerson and Sandiford (1997). The reader is referred to this latter paper for a
detailed reference list to waves in pre-stressed media. The motivation is to give some detailed indications
of the precise in¯uence of pre-stress on material characteristics.

We begin this paper in Section 2 with a brief review of the basic equations and derivation of both the
extensional and ¯exural dispersion relation. In Section 3 various numerical solutions of the dispersion
relation associated with extensional waves are presented which speci®cally show phase speed against
scaled wave number. It is established that four distinct cases exist which are associated with the
moderate and high wave number regions and are classi®ed in terms of material parameters. Additionally
a surface wave front is observed in some of these numerical solutions to arise from the cumulative e�ect
of harmonics. In Section 4 asymptotic high wave number expansions are derived for each of the four
previously mentioned cases and are observed to provided excellent agreement with the numerical
solution. It is envisaged that these expansions will aid investigation of impact problems, speci®cally in
estimation of errors incurred in numerical truncation of wave number integrals. In Section 5 the surface-
wave-like behaviour associated with the harmonics is explicated by examining the corresponding in-
plane and out-plane eigenfunctions. The harmonics are clearly observed to show classic surface wave
behaviour over a speci®c wave number region and rapidly transform to sinusoidal variation outside this
wave number region. The paper is concluded in Section 6 with a numerical comparison of the dispersion
relations associated with extensional and ¯exural waves.

2. Basic equations and the dispersion relation

In this section we brie¯y review the basic equations governing small amplitude, time dependent
motions superimposed upon a large static primary deformation in respect of small amplitude travelling
waves in an incompressible elastic layer. The appropriate dispersion relation associated with both
¯exural and extensional waves in a 4-ply symmetric laminate is then derived by satisfying continuity
conditions across each perfectly bonded interface and utilising boundary conditions of zero incremental
traction. For details concerning the derivation of the solutions represented here the reader is referred to
Rogerson and Sandiford (1996), and for a more detailed examination of the basic equations see
Dowaikh and Ogden (1990).

Consider a 4-ply laminated plate which is symmetrical about its mid-plane, consists of two identical
outer layers of width h, an inner core of width 2d and is of in®nite extent in each of the remaining
spatial directions. The material of the inner core and the outer layers is that of a pre-stressed,
incompressible elastic solid with principal axes of the right Cauchy±Green strain tensor assumed co-
incident for each layer. An appropriate Cartesian coordinate system Ox1x2x3 is chosen coincident with
the principal axes in the pre-stressed equilibrium state, such that Ox 2 is normal to the plane of the
plate, Ox 1 is the direction of propagation and the origin O is at the mid-plane of the structure. A plane
strain simpli®cation of the equations of motion associated with the outer layer yields the two non-trivial
equations

B1111u1,11 � �B1122 � B2112 �u2,21 � B2121u1,22 ÿ p�,1 � r �u1, �2:1�

�B1221 � B2211 �u1,12 � B1212u2,11 � B2222u2,22 ÿ p�,2 � r �u2, �2:2�
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in which it has been assumed u3 � 0 and u1 and u2 are independent of x3. Furthermore, in eqns (2.1)
and (2.2) Bijkl are components of the appropriate fourth-order elasticity tensor, p� is a time-dependent
pressure increment, r the density of the material and a comma indicates di�erentiation with respect to
the implied spatial co-ordinate component in the ®nitely deformed equilibrium state Be. In addition, two
non-zero linearised traction increments are obtainable in the component form

t1 � B2121u1,2 � �B2112 � �p �u2,1, �2:3�

t2 � B2211u1,1 � �B2222 � �p �u2,2 ÿ p�, �2:4�
with �p denoting a static pressure in Be.

Solutions of the basic equations governing small amplitude motions for displacement and incremental
traction in an incompressible layer, under the assumption of plane strain, may be speci®ed using the so-
called propagator matrix P, thus

Y�x2� � P�x2 ÿ �x2�Y� �x2�, �2:5�

where Y�x2� is a vector of displacement and traction de®ned as Y�x2� � �ÿiU, V, t1=ik, t2=k�T, ttt is the
incremental traction and U and V are eigenfunctions of the superimposed motion u in the form of the
travelling wave, namely �u1, u2� � �U, V � ekqx 2 eik�x 1ÿ vt�, with k being the wave number and v the phase
speed. The components of the propagator matrix are given in the appendix and q is constrained in order
to yield non-trivial solutions, thus

gq4 � �rv2 ÿ 2b�q2 � aÿ rv2 � 0, �2:6�
within which a, b and g are material parameters de®ned in terms of the components of the fourth-order
elasticity tensor Bijkl by

a � B1212, 2b � B1111 � B2222 ÿ 2B1122 ÿ 2B1221, g � B2121:

Denoting the two roots of eqn (2.6) by q21 and q22 it is noted for future reference that

g�q21 � q22� � 2bÿ rv2, gq21q
2
2 � aÿ rv2: �2:7�

Eqn (2.5) therefore provides a relationship between the values of displacement and traction at an
arbitrary location in a layer to the (unknown) values at some speci®c location x2 � �x2 via the
propagator matrix. For speci®ed values of the material parameters a, b, g and r the propagator matrix is
a function of wave number k, phase speed v and the distance x2 ÿ �x2 � h, say. For more details
concerning the properties of the propagator matrix see Gilbert and Backus (1966). It is reiterated that
eqns (2.5)±(2.7) have been derived under a plane strain simpli®cation, in that it is assumed that all time
dependent quantities are independent of x3 and that u3 � 0. This has the consequence of reducing the
subsequent boundary and continuity conditions from a linear homogeneous system of six equations in
six unknowns to a system of four equations in four unknowns.

The material parameters a, b, g and r are used to represent the material of the outer two layers and
eqn (2.5) is used to represent the associated solutions of displacement and traction. The corresponding
parameters for the inner core are denoted by ~a , ~b , ~g and ~r , and lead to di�erent solutions of the
governing equations. These di�erent solutions are generally denoted by imposing an over tilde, and
using pm rather than qm, thus the solutions for the inner core take the form

ÄY �x2� � ÄP �x2 ÿ �x2� ÄY � �x2�, �2:8�
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where ÄY � �ÿi ~U , ~V , ~t1=ik, ~t2=k�T and ÄP is the appropriate propagator matrix, which may be deduced
directly from P with appropriate notational changes. Continuity conditions across the upper interface
may now be expressed in the form Y�d � � ÄY �d�. By using eqns (2.5) and (2.8) with the continuity
condition it is possible to relate the solution at the upper most surface x2 � h� d in terms of the
solutions at the upper-most interface x2 � d and then in terms of the solution at the mid-plane, thus

Y�d� h� � P�h� ÄP �d� ÄY �0�: �2:9�
We ®rst consider extensional waves for which ~V and ~t1 vanish at the mid-plane. Incorporating this
condition with both the boundary condition of zero incremental traction on the upper surface and
continuity across the perfectly bonded upper interface yields a system of four equations in four
unknowns, which will yield a non-trivial solution provided

P3i
~Pi1P4j

~Pj4 ÿ P3i
~Pi4P4j

~Pj1 � 0: �2:10�
Eqn (2.10) is the dispersion relation for extensional waves in the symmetric 4-ply structure. For the
corresponding derivation of the dispersion relation associated with ¯exural waves it is required that ~U
and ~t2 vanish on the mid-plane, implying that

P3i
~Pi2P4j

~Pj3 ÿ P3i
~Pi3P4j

~Pj2 � 0, �2:11�
see Rogerson and Sandiford (1996). Throughout the greater part of this paper our concern is with
extensional waves. The dispersion relation associated with ¯exural waves is quoted to facilitate later
comparison of numerical results. Inserting the de®nitions of the appropriate components of the two
propagator matrices, and on the removal of a common factor, eqn (2.10) may be stated explicitly as

2q1q2f�q1�f�q2�D1 � q1f�q2�2
�ÿ C1S2D2 � C1C2D3 � S1S2D4 ÿ S1C2D5

	
� q2f�q1�2

�
S1C2D2 ÿ S1S2D3 ÿ C1C2D4 � C1S2D5

	 � 0, �2:12�

where

D1 � p1q2f ~f �p2� ÿ f�q2�gf f�q1� ÿ ~f �p2�g ~C1
~S2 � p2q2f ~f �p1� ÿ f�q2�gf ~f �p1� ÿ f�q1�g ~S1

~C2,

D2 � p1p2f f�q2 � ÿ f�q1 �g ~f �p1� ÿ f ~f �p2�g ~C1
~C2,

D3 � p1q2f ~f �p2� ÿ f�q1�g2 ~C 1
~S2 ÿ p2q2f ~f �p1 � ÿ f�q1�g2 ~S1

~C2,

D4 � p2q1f ~f �p1� ÿ f�q2�g2 ~S1
~C2 ÿ p1q1f ~f �p2 � ÿ f�q2�g2 ~C1

~S2,

D5 � q2q2f f�q2 � ÿ f�q1 �gf ~f �p1� ÿ ~f �p2�g ~S1
~S2,

within which

f�qm � � g
ÿ
1� q2m

�
ÿ s2, ~f �pm � � ~g

ÿ
1� p2m

�
ÿ s2,

Sm � sinh kqmh, ~Sm � sinh kpmd,

Cm � cosh kqmh, ~Cm � cosh kpmd,

and s2 is the principal Cauchy stress along the Ox 2-direction.
It is noted that q1 and q2 (p1 and p2) may be either real, purely imaginary or complex conjugates. The

implication is that there exists twenty ®ve distinct cases to consider if one wishes to solve the dispersion
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equation numerically. However, in each case the dispersion relation remains either real or purely
imaginary. This is shown most easily by considering the components of the propagator matrices P(h )
[and ÄP �d�] given in the Appendix. It is easily veri®ed that all components of P(h ) [and similarly ÄP �d �]
remain real in the cases when one or both of q1 and q2 (p1 and p2) are purely imaginary. In the case
when q1 and q2 (p1 and p2) are complex conjugates each component of P(h ) [ ÄP �d�] is a quotient formed
by the di�erence of two complex conjugates, thus ensuring that the components of P(h ) [ ÄP �d�] all
remains real in this case. It is also noted that the removal of a common factor from the dispersion
relation (2.12) means that whilst all the components of each propagator matrix are always real, the
dispersion relation as expressed in the form of eqn (2.12) will either be real or purely imaginary.

3. Numerical results for extensional waves

The results of a numerical investigation of the dispersion relation for extensional waves (2.12) are
presented here. These numerical results relate to four speci®c materials, two associated with the
Mooney±Rivlin strain energy and two with the Varga strain energy.

3.1. Mooney±Rivlin material

Two ®gures of dispersion curves will now be presented using material parameters for the inner core
and outer layers generated from the Mooney±Rivlin strain energy function.

W � C1

�
l21 � l22 � l23 ÿ 3

�
� C2

�
l21l

2
2 � l22l

2
3 � l21l

2
3 ÿ 3

�
, �3:1�

in which C1 and C2 are material constants and l1, l2 and l3 are principal stretches of the primary
deformation. The two Mooney±Rivlin materials used in the inner core and outer layers are summarised,
along with the corresponding values of a, b and g, in Table 1.

In Fig. 1 a graph is presented which shows the phase speed against scaled wave number for the ®rst
twenty ®ve branches of the dispersion relation (2.12) and is generated for a laminate formed from
materials 1 and 2 (from Table 1) in the outer layers and inner core, respectively. For these material
parameters the fundamental mode has a high wave number limit corresponding to a Rayleigh surface
wave with speed vR � 1:1823, associated with the outer layers, while the harmonics asymptote to a shear
wave speed associated with the outer layers, denoted by vS1

and termed the ®rst shear wave speed of the
outer layers. Numerically it is observed that as kh, kd41 one of q1 and q2 is imaginary, the other real,
with p1 and p2 real. (A similar asymptotic structure occurs when p1 and p2 form a complex conjugate
pair.) It is further inferred from numerical analysis that if q1 � iq̂1, then q̂14 0 as kh, kd41. The
speci®c value of vS1

is then found by putting q � 0 in eqn (2.6) and is therefore given by rv2S1
� a. A

Table 1

Mooney±Rivlin and Varga materials used in generating dispersion curves. Note

l3 � �l1l2�ÿ1

Material C1 C2 l1 l2 a 2b g

1 1.2 0.3 1.0 0.866 2.0 3.5 1.5

2 1.6 0.2 1.414 0.707 4.0 5.0 1.0

3 4.5 Ð 1.5 1.0 4.05 5.4 1.8

4 2.2 Ð 2.0 0.5 3.52 1.76 0.22

G.A. Rogerson, K.J. Sandiford / International Journal of Solids and Structures 37 (2000) 2059±2087 2063



further point to note from eqn (2.6) is that for q2 to be real ae2b. This high wave number limit is to be
referred to as Case 1. In the low wave number limit it is only the fundamental mode which retains ®nite
wave speed. The ¯attening of the dispersion curves to form a ghost line is evident, this occurring at the
®rst shear wave speed of the inner core ~vS1

, obtained by putting p � 0 in the analogous appropriate
form of (2.6) to yield ~r ~v2S1

� ~a .
The second plot, Fig. 2, is generated using materials 1 and 2 from Table 1 for the inner core and

outer layers, respectively. The fundamental mode and all harmonics tend to ~vS1
in the high wave limit, a

scenario termed Case 2. Numerically therefore, in this case only one of p1 and p2 is real, the other
imaginary, with q1 and q2 being real (or complex conjugates) in the high wave limit. Accordingly it is
deduced that if p1 � ip̂1, then jp1j4 0 as kh, kd41 and 2 ~b > ~a . For the material parameters and the
value of s2 chosen there exists a surface wave speed greater than the limiting wave speed of all the
harmonics. As previously discussed by Rogerson and Sandiford (1997), this is not a valid limit for the
harmonics as kh, kd41 but rather causes ¯attening of the dispersion curves around the appropriate
value of the surface wave speed vR, forming a sharp line across the harmonics. Such a sharp ¯attening
gives rise to surface-wave-like behaviour arising from the combined e�ect of the higher harmonics and
will be discussed in more detail in a later section.

3.2. Varga material

A further set of two ®gures are presented here using material parameters generated from the Varga
strain energy function. The Varga strain energy function takes the form

Fig. 1. Phase speed against scaled wave number for Mooney±Rivlin materials 1 and 2 from Table 1 in the outer layers and inner

core, respectively, and s2 � 2:5, with vR � 1:1823, no real vI, vS1
� 1:414, ~vS1

� 2:0, no real vS2
and ~vS2

� 1:732.
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W � C1�l1 � l2 � l3 ÿ 3�, �3:2�
where C1 is a shear modulus. The two Varga materials used in next ®gures in both the inner core and
outer layers are denoted by material 3 and 4, and are summarised with the appropriate material
constants are in Table 1.

Fig. 3 shows the ®rst twenty ®ve branches of the dispersion relation (2.12) for a laminate formed of
material 3 in the outer layers and material 4 in the inner core. For these material parameters the high
wave number phase speed limit of the fundamental mode and all harmonics is ~vS2

, a second shear wave
in the inner core. This behaviour we will refer to as Case 3. In this case within the high wave number it
is known that p1 and p2 are both imaginary, with jp1j4 jp2j as kh, kd41, whilst q1 and q2 are either
both real or complex conjugates. Accordingly the high wave number limit is obtained by setting the
discriminant of the appropriate form of (2.6) to zero, to obtain

~r ~v2S2
� 2 ~b ÿ 2~g � 2

���
~g

p �����������������������
~a � ~g ÿ 2 ~b

q
, �3:3�

where a similar shear wave speed vS2
associated with the outer layers is also noted. In Fig. 3 the

harmonics ¯atten together to form ghost lines at various values of the phase speed. Two of these values
are associated with the ®rst shear wave speed values in the inner core ( ~vS1

� 1:876) and the outer layers
(vS1

= 2.012). The third ghost line is formed around the value of v11:936 and appears to be associated
with the material parameters of the inner core (material 4). This ghost line is not associated with the
values of the three shear wave speeds vS1

, ~vS1
, ~vS2

or vS2
nor with the surface save speed vR. It has been

Fig. 2. Phase speed against scaled wave numbers for Mooney±Rivlin materials 2 and 1 from Table 1 in the outer layers and inner

core, respectively, and s2 � 1:8, with vR � 1:8378, no real vI, vS1
� 2:0, 1:414, vS2

� 1:732 and no real ~vS2
.
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veri®ed numerically that there is no such ¯attening of the dispersion curves around this value for a
single layer plate formed of the same material, and this is therefore a feature of multi-layered media.
The reason for formation of such ¯attening around this wave speed value therefore appears complex
and, as such, is left for future work. For wave speeds below the ghost line associated with ~vS1

(= 1.876)
there exists oscillatory behaviour in the fundamental mode and harmonics.

A ®nal graph of dispersion curves for extensional waves is shown in Fig. 4. For this graph materials 3
and 4 from Table 1 have been used for the inner core and outer layers, respectively. These parameters
yield a surface wave with speed vR=1.3067 as the high wave number limit of the fundamental mode,
with the corresponding limit of the harmonics being vS2

= 1.625. This behaviour corresponds to Case 4
and thus numerically we have that q1 and q2 are both imaginary, with jq1j4 jq2j as kh41, whilst p1
and p2 are either both real or complex conjugates. There is ¯attening of the dispersion curves associated
with the remaining shear wave speeds, vS1

� 1:876, ~vS1
� 2:012 and v11:936, with the sharpest ¯attening

occurring around this last value. The harmonics exhibit oscillatory behaviour for phase speeds less than
vS1

, with the harmonics apparently grouping together in pairs.

4. An asymptotic analysis

We shall now investigate the numerical indications discussed in the previous section analytically in
respect of arbitrary strain energy functions. Speci®cally an asymptotic analysis in both the high and low
wave number regions is carried out.

Fig. 3. Phase speed against scaled wave number for Varga materials 3 and 4 from Table 1 in the outer layers and inner core,

respectively, and s2 � 1:0, with vR � 2:0068, no real v1, vS1
� 2:012, ~vS1

� 1:876, vS2
� 1:897 and ~vS2

� 1:625.
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4.1. Long wavelength limit (kh 4 0)

The long wave limit is investigated by allowing kh, kd4 0 in the dispersion relation. The numerical
results obtained indicate that only the fundamental mode retains a ®nite wave speed in the limit, and
therefore the limit kh, kd4 0 of the dispersion relation (2.12) is ®rst taken whilst assuming that the
speed of wave propagation remains ®nite. The leading order term of eqn (2.12) in the long wave limit is
given by

2q1q2f�q1� f�q2 �d�0�1 � q1f�q2�2fÿkq2hd�0�2 � d�0�3 g ÿ q2f�q1�2fkq1hd�0�2 ÿ d�0�4 g �O�k2� � 0, �4:1�

within which

d�0�1 � p1f ~f �p2� ÿ f�q2�gf f�q1� ÿ ~f �p2�gkp2d� p2f ~f �p1 � ÿ f�q2 �gf ~f �p1� ÿ f�q1�gkp1d,

d�0�2 � p1p2f f�q2� ÿ f�q1�gf ~f �p1 � ÿ ~f �p2�g,

d�0�3 � p1q2f ~f �p2 � ÿ f�q1�g2kp2dÿ p2q2f ~f �p1� ÿ f�q1�g2kp1d,

d�0�4 � p2q1f ~f �p1 � ÿ f�q2�g2kp1dÿ p1q1f ~f �p2� ÿ f�q2�g2kp2d: �4:2�

After some algebraic manipulation eqn (4.1) may be simpli®ed to

df f�q1 � ÿ f�q2 �g2f ~f �p1�2ÿ ~f �p2�2g � hf ~f �p1� ÿ ~f �p2�g2f f�q1�2ÿf�q2�2g � 0: �4:3�

Fig. 4. Phase speed against scaled wave number for Varga materials 4 and 3 from Table 1 in the outer layers and inner core,

respectively, and s2 � 0:5, with vR=1.3067, no real vI, vS1
� 1:876, vS2

� 1:625, ~vS1
� 2:012 and ~vS2

� 1:732.
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It is clear that eqn (4.3) possesses two common factors in each of the terms, namely f ~f �p1� ÿ ~f �p2�g and
f f �q1� ÿ f �q2�g. Both of these factors correspond to spurious roots of the dispersion relation associated
with the double roots p21 � p22 and q21 � q22, respectively. These roots are spurious in the sense that they
lead to non-dispersive shear wave speeds. On removing the spurious roots and making use of the
appropriate forms of eqn (2.7), the long wave speed of the fundamental mode may be obtained in the
form

v �
��������������������������������������������������������������
2
ÿ
~b � ~g ÿ s2

�
� 2�b� gÿ s2�

~rd� rh

s
: �4:4�

4.2. Surface and interfacial waves

Our numerical calculations indicated that the high wave number limiting behaviour of the dispersion
relation depends on whether p1, p2, q1 and q2 are real, imaginary or complex conjugates. If we ®rst
consider the case when p1 and p2, and q1 and q2 are either purely real or complex conjugates, then in
the limit kh, kd41 the dispersion relation (2.12) tends ton

q1f�q2�2 ÿ q2f�q1�2
on

d�1�2 ÿ d�1�3 ÿ d�1�4 � d�1�5

o
� 0, �4:5�

in which a superscript (1) indicates that we have divided the dispersion relation by appropriate
hyperbolic functions and the resultant hyperbolic tangents have been replaced with unity. It may readily
be shown that these two factors yield the Rayleigh surface wave equation (R�v� � 0) and the Stoneley
interfacial wave equation (S�v� � 0), see Dowaikh and Ogden (1990) and Dowaikh and Ogden (1991),
respectively. Whether such waves exist in a particular case is dependent on the material parameters and
on the Cauchy stress s2 in the case of surface waves. If real solutions of both equations exist in general
the fundamental mode and ®rst harmonic will tend to one of each in order of increasing magnitude,
however in the numerical section a situation was observed in which a valid surface wave speed exists but
is not a high wave number limiting wave speed. This will be further discussed in a later section.

4.3. Short wavelength limit of the harmonics (kh 4 1)

In general, with the possible exception of the ®rst, all harmonics will tend to the lower of two shear
wave speeds associated with the inner core and the outer layers. The value of the limiting wave speed in
the outer layers will take one of two values depending on the material parameters, speci®cally the
relative magnitudes of a and 2b. The ®rst limiting wave speed arises when a E 2b and numerically it is
known that one of q1 and q2 is imaginary, the other remaining real. If q1 � iq̂1 then jq̂1j4 0 as
kh, kd41. The second case arises when a > 2b and it is seen numerically that both q1 and q2 are
imaginary and that jq1j4 jq2j as kh, kd41. The limiting wave speed in the outer layer may therefore
be written explicitly as

rv2L �
8<: rv2S1

� a a E 2b

rv2S2
� 2bÿ 2g� 2

���
g
p ����������������������

a� gÿ 2b
p

a > 2b
, �4:6�

with the corresponding limiting wave speed for the inner core given by
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~r ~v2L �

8><>:
~r ~vS1
� ~a ~aE2 ~b

~r ~vS2
� 2 ~b ÿ 2~g � 2

���
~g

p �����������������������
~a � ~g ÿ 2 ~b

q
~a > 2 ~b

: �4:7�

In general the limiting wave speed for the outer layers (inner core) will be the minimum of vS1
and vS2

( ~vS1
and ~vS2

). However, in certain situations it is possible for vS1
� ~vS1
� to be the limiting wave speed

when vS2
< vS1

� ~vS2
< ~vS1

�. This point may be elucidated by considering the situation in which q1 and q2
are complex conjugates, namely that q1 � qr � iqi and q2 � qr ÿ iqi, where qr, qi > 0. Under this
specialisation eqn (2.7) becomes

2g
ÿ
q2r ÿ q2i

� � 2bÿ rv2, g
ÿ
q2r � q2i

�2� aÿ rv2: �4:8�
As qr and qi are real and positive in eqn (4.8) it is inferred that the region in which q1 and q2 are
complex is restricted by a > rv2 and explicit representations of qr and qi are deduced to be

q2r �
2bÿ rv2

4g
�

����������������
aÿ rv2

4g

s
, q2i �

rv2 ÿ 2b
4g

�
����������������
aÿ rv2

4g

s
: �4:9�

The limit v4 vS2
as kh41 occurs as the discriminant of eqn (2.6) vanishes. This may arise in one of

two ways, the ®rst occurs when q1 4 ÿ q2, corresponding to qr vanishing and q1 and q2 both being
imaginary, whilst the second occurs when q1 4 q2, corresponding to qr vanishing and q1 and q2 both
being real. It should be noted that vS2

will only be a valid limiting wave speed in the case when q1 and
q2 are both imaginary. When q1 and q2 are real the only valid limiting wave speeds of the dispersion
equation are those given be the Rayleigh surface wave equation and the Stoneley interfacial equation. If
qr � 0 then from eqn (4.9) we have

rv2S2
ÿ 2b
4g

�
������������������
aÿ rv2S2

4g

s
> 0, �4:10�

from which it is inferred that rv2S2
> 2b, and on making use of the de®nitions of vS2

this condition
becomes a < 2b and the region within which vS2

can lie given by 2b < rv2S2
< a. If qi � 0 then from eqn

(4.9) we have

2bÿ rv2S2

4g
�

������������������
aÿ rv2S2

4g

s
> 0, �4:11�

from which it is deduced that a > 2b. It is clear from eqn (4.6) that a real value of vS2
will only exist if

a� g > 2b. This condition is automatically satis®ed in the case when a > 2b. It is then clear that in
general there are four possible wave speed limits for the harmonics as kh, kd41, the actual limit
therefore being dependent on the material parameters. Each possible limit is now analysed in turn.

Case 1: v 4 vS1
with 2b e a and v2S1

< ~r ~v2L

In the Case 2 bea and rv2S1
< ~r ~v2L numerical calculations indicate that for all harmonics rv2 will in

general approach a from above and therefore, from eqn (2.6), only one of q1 and q2 is real, the other
being purely imaginary, with p1 and p2 either real or complex conjugates. It is assumed, without loss of
generality, that q1 � iq̂1, where q̂1e0 is real, and q̂1 4 0 as kh, kd41. It is reiterated that the
inequality 2b e a precludes vS2

from being a valid limit for the harmonics even if vS2
exists and vS2

< vS1
.

Accordingly we seek to expand the dispersion relation (2.12) around the small order quantity q̂1. Using
eqn (2.6) an expansion for the phase speed is obtained, thus
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rv2 �
�
gq̂41 � 2bq̂21 � a

��
1� q̂21

�ÿ1
� a� q̂21�2bÿ a� � q̂41�a� gÿ 2b� �O

�
q̂61

�
: �4:12�

Similar expansions for q2, p1 and p2 are then obtained using eqn (4.12) with the appropriate form of eqn
(2.6), namely

q2 � q
�0�
2 �O

�
q̂21

�
, p1 � p

�0�
1 �O

�
q̂21

�
, p2 � p

�0�
2 �O

�
q̂21

�
, �4:13�

within which q
�0�
2 , p

�0�
1 and p

�0�
2 are order 1 quantities de®ned by

q
�0�
2 �

���������������
2bÿ a

g

s
,

p
�0�2
1 , p

�0�2
2 � 1

2~g

8<:2 ~b ÿ ~ra
r

2

����������������������������������������������������������
2 ~b ÿ ~ra

r

�2

ÿ4~g
�

~a ÿ ~ra
r

�s 9=;: �4:14�

On making use of eqns (4.12)±(4.14) the associated form of the dispersion relation for extensional waves
(2.12), appropriate for large kh, kd, then takes the form

tan
ÿ
kq̂1h

��h
�gÿ s2�2q�0�2 Z1 �O

�
q̂21

�i
ÿ q̂21

��
g
�
q
�0�2
2 � 1

�
ÿ s2

�2
z1 �O

�
q̂21

���
� q̂1

��
g
�
q
�0�2
2 � 1

�
ÿ s2

�2
Z1 � �gÿ s2�2q�0�2 z1 �O

�
q̂21

��
, �4:15�

within which Z1 and z1 are order 1 quantities de®ned as

Z1 � p
�0�
1 q
�0�
2

n
gÿ ~g

�
p
�0�2
2 � 1

�o2
ÿp�0�2 q

�0�
2

n
gÿ ~g

�
p
�0�2
1 � 1

�o2
�p�0�1 p

�0�
2 q
�0�
2

�
p
�0�2
2 ÿ p

�0�2
1

�
g~g , �4:16�

z1 � p
�0�
1

n
g
�
q
�0�2
2 � 1

�
ÿ ~g

�
p
�0�2
2 � 1

�o2
ÿq�0�32

�
p
�0�2
2 ÿ p

�0�2
1

�
g~g ÿ p

�0�
2

n
g
�
q
�0�2
2 � 1

�
ÿ ~g

�
p
�0�2
1 � 1

�o2
: �4:17�

It is clear from eqn (4.15) that the leading-order term will change if g � s2 and we will therefore consider the
two cases g 6� s2 and g � s2 separately.

(i) g 6� s2

In the case when g 6� s2 the leading-order terms of eqn (4.15) now yield

tan
ÿ
kq̂1h

�n
�gÿ s2 �2q�0�2 Z1 �O

�
q̂21

�o
� q̂1

��
g
�
q
�0�2
2 � 1

�
ÿ s2

�2
Z1 � �gÿ s2 �2q�0�2 z1 �O

�
q̂21

��
: �4:18�

From eqn (4.18) it is deduced that O�1� tan �kq̂1h�0O�q̂1�, implying that tan �kq̂1h�4 0 as q̂1 4 0, and
therefore,

q̂1 �
np
kh
�O�kh�ÿ2: �4:19�

G.A. Rogerson, K.J. Sandiford / International Journal of Solids and Structures 37 (2000) 2059±20872070



Inserting eqn (4.19) into eqn (4.12) yields the second-order approximation to the phase speed of the nth
harmonic

rv2n � a� �2bÿ a�
�
np
kh

�2

� � � � , n � 1, 2, 3, . . . : �4:20�

A higher-order expansion for the phase speed is obtained by setting

q̂1 �
np
kh
� f1

�kh�2
�O�kh�ÿ3, tan

ÿ
kq̂1h

� � f1

kh
�O�kh�ÿ3, �4:21�

in which f1 is to be determined. If these two expansions are inserted into eqn (4.18) and like powers of kh
equated it is found that

f1 �

8><>:
n
g
�
q
�0�2
2 � 1

�
ÿ s2

o2
q
�0�
2 �gÿ s2 �2

� z1
Z1

9>=>;np: �4:22�

On inserting eqn (4.22) into eqn (4.21)1, and on making use of eqn (4.12), it may be shown that

rv2n � a� �2bÿ a�
�
np
kh

�2

8><>:1� 2

kh

8><>:
n
g
�
q
�0�2
2 � 1

�
ÿ s2

o2
q
�0�
2 �gÿ s2�

� z1
Z1

9>=>;
9>=>;� � � � , n � 1, 2, 3, . . . : �4:23�

A comparison of the asymptotic expansions obtained in eqn (4.23) with numerical solutions of the
dispersion relation (2.12) is presented in Fig. 5 for the same material parameters used in Fig. 1. Fig. 5
indicates good agreement between the asymptotic expansions and the numerical solutions in the high
wave number regime. As may be expected, the value of scaled wave number at which this good
agreement is obtained increases as the harmonic number increases, i.e., as n increases. It is noted that
expansions for large n and moderate wave number have been obtained for a single plate by Rogerson
(1997). Whilst in theory such expansions could be obtained for the symmetric 4-ply plate, the increased
algebraic complexity makes the derivation of these di�cult and time consuming to obtain without resort
to a computer manipulation package.

(ii) g � s2

In the case in which g � s2 the leading-order term of the dispersion relation changes and may be
deduced from eqn (4.15) to be

ÿq̂21 tan
ÿ
kq̂1h

�n
z1 �O

�
q̂21

�o
� q̂1

n
Z1 �O

�
q̂21

�o
, �4:24�

from which it is readily inferred that O�q̂1� tan �kq̂1h�0O�1� implying that tan �k ~q1h�41 as kh41.
Accordingly expansions for the phase speed are sought by setting

q̂1 �
�
n� 1

2

�
p� f�1
�kh�2

�O�kh�ÿ3, tan
ÿ
kq̂1h

� � ÿkh
f�1
�O�kh�ÿ1, �4:25�

where f�1 is to be determined. On inserting the expansions shown in eqn (4.25) into eqn (4.24), and by
examine leading-order terms, it is found that
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f�1 �
z1
Z1

�
n� 1

2

�
p: �4:26�

Finally, inserting eqn (4.26) into eqn (4.25)1 and by making use of eqn (4.12), the third-order expansion
of the phase speed in this case is found, namely

rv2n � a� �2bÿ a�
�
n� 1

2

�2� p
kh

�2�
1� 2

kh

z1
Z1

�
� � � � , n � 1, 2, 3 . . . : �4:27�

It is interesting to note in eqn (4.23) and (4.27) that n is replaced by (n+1/2) in the second- (and
higher)-order terms.

The asymptotic representations shown in eqn (4.23) have been obtained previously for the analogous
¯exural wave problem in this particular case, see Rogerson and Sandiford (1997, eqn (4.40)). The same
expansion is obtained for both the ¯exural and extensional dispersion relations as the two dispersion
relations di�er only by subtle permutation of the hyperbolic functions associated with the inner core,
namely ~Cm 4 ~Sm and ~Sm4 ~Cm�m � 1, 2�. The two dispersion relations therefore have the same limiting
behaviour when p1 and p2 are both real or form a complex conjugate pair (i.e. when the limiting
behaviour of tanh kpmd is well de®ned for large wave number). This is examined further in a later
section when numerical solutions of the extensional and ¯exural dispersion relations are compared.

Case 2: v 4 ~vS1
when 2 ~be~a and ~r ~v2S1

< rv2L
By a similar argument to the previous case ~rv2 4 ~a from above and hence only one of p1 and p2 is
imaginary, with q1 and q2 both real or a complex conjugate pair. If p1 � ip̂1, where p̂1e0 then as
kh, kd41, p̂14 0 and accordingly we expand the dispersion relation (2.12) around this small quantity

Fig. 5. Comparison of numerical solutions with asymptotic expansions obtained for Case 1, see eqn (4.23). The same material par-

ameters from Fig. 1 are used.
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p̂1. The analogous forms of eqn (4.13) are now given by

p2 � p
�0�
2 �O

�
p̂21

�
, q1 � q

�0�
1 �O

�
p̂21

�
, q2 � q

�0�
2 �O

�
p̂21

�
,

where p
�0�
2 , q

�0�
1 and q

�0�
2 maybe inferred from eqn (4.14). On making use of these expansions and allowing

kh, kd to be large, the dispersion relation factorises into two components, thus either

q
�0�
1 f

�
q
�0�
2

�2
ÿ q
�0�
2 f

�
q
�0�
1

�2
�O

�
p̂21

�
� 0, �4:28�

or

tan kp̂1d
n
z2 �O

�
p̂21

�o
� p̂1

n
Z2 �O

�
p̂21

�o
, �4:29�

where Z2 and z2 are order 1 quantities de®ned as

z2 � p
�0�
2 q
�0�
2

n
~g ÿ g

�
q
�0�2
1 � 1

�o2
ÿ p
�0�
2 q
�0�
1

n
~g ÿ g

�
q
�0�2
2 � 1

�o2
ÿp�0�2 q

�0�
1 q
�0�
2

n
q
�0�2
2 ÿ q

�0�2
1

o
, �4:30�

Z2 � q
�0�
2

n
~g
�
p
�0�2
2 � 1

�
ÿ g

�
q
�0�2
2 � 1

�o2
ÿ q
�0�
1

�
~g
�
p
�0�2
2 � 1

�
ÿ g

�
q
�0�
2 � 1

��2

�p�0�32

n
q
�0�2
2 ÿ q

�0�2
1

o
: �4:31�

Eqn (4.28), to leading order, corresponds to R� ~vS1
� � 0 and therefore is not a valid limit except in the

exceptional case vR � ~vS1
. However, in such cases in which a Rayleigh surface wave speed exists and is

greater than the limiting wave speed of the harmonics a surface wave front may be formed from the
combined contribution of harmonics, see later in Figs 9 and 10.

From eqn (4.29) it is readily deduced that O(1)tan kp̂1d0O�p̂1�, implying that tan kp̂1d4 0 as
p̂14 0 in the limit kh, kd41, therefore

p̂1 �
np
kd
�O�kd�ÿ2: �4:32�

The second-order approximation to the phase speed is obtained by inserting eqn (4.32) into the
appropriate form of (4.12), yielding

~rv2n � ~a �
ÿ
2 ~b ÿ ~a

��np
kd

�2

� � � � , n � 1, 2, 3, . . . : �4:33�

A third-order approximation is then sought by setting

p̂1 �
np
kd
� f2

�kd�2
�O�kd�ÿ3, tan kp̂1d �

f2

kd
�O�kd�ÿ3, �4:34�

where f2 is to be determined. On inserting eqn (4.34) into (4.29) and comparing like powers of kd it is
readily deduced that

f2 �
Z2
z2
np: �4:35�

Finally inserting eqns (4.35) and (4.34)1 into equation the appropriate form of (4.12) gives rise to the
third-order expansion of the phase speed, namely
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~rv2n � ~a �
ÿ
2 ~b ÿ ~a

��np
kd

�2
(
1�

�
2

kd

�
Z2
z2

)
� � � � , n � 1, 2, 3, . . . : �4:36�

A comparison of the numerical solutions and the asymptotic expansions is given in Fig. 6 which
shows the asymptotic expansions generated from eqn (4.36) superimposed upon the ®rst seven
harmonics of the dispersion curves shown in Fig. 2. The ®gure indicates exceptional agreement between
the asymptotic and numerical solutions. It is interesting to note that the asymptotic expansions
associated with the nth harmonics provides a reasonable approximation until the ¯attening of the
dispersion curves around vR. Above this ¯attening the expansions for the nth harmonics appears to
follow the (n + 1)th harmonic.

Case 3: v 4 ~vS2
when 2 ~b < ~a and ~r ~v2S2

< rv2L
The limit v4 ~vS2

arises when the material parameters are such that 2 ~b < ~a and ~r ~v2S2
< rv2L. Numerical

calculations guide us in assuming that as kh, kd41 both p1 and p2 are imaginary, with jp1j4 jp2j,
whilst q1 and q2 are either real or complex conjugates. The limit kh, kd41 may therefore be examined
in this case be setting

p21 � ÿ ~a � ~b , p22 � ÿ ~a ÿ ~b , ~a > 0, ~be 0, �4:37�
where ~a and ~b are real and ~b 4 0 as kh, kd41. The implication is that ~rv24 ~r ~v2S2

from above and it
may be easily deduced from the appropriate form of eqn (2.7) that the region in which (4.37) is valid is
~r ~v2S2

< ~rv2 < ~a . The values of ~a and ~b may be obtained explicitly from the appropriate form of eqn
(2.6), thus,

Fig. 6. Comparison of numerical solutions with asymptotic expansions obtained for Case 2, see eqn (4.36). The same material

parameters from Fig. 2 are used.
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~a � ~rv2 ÿ 2 ~b
2~g

, ~b �
�������������������������������������������������������ÿ
2 ~b ÿ ~rv2

�2 ÿ 4~g
ÿ
~a ÿ ~rv2

�q
2~g

: �4:38�

If the forms of p21 and p22 shown in eqn (4.37) are inserted into the appropriate form of eqn (2.7) it is
observed that ~a may be expanded in terms of ~b to obtain

~a � ~a0 � ~a1
~b
2 �O

�
~b
4
�
, �4:39�

where

~a0 � ÿ1� ~g1=2
ÿ
~a � ~g ÿ 2 ~b

�1=2
, ~a1 � 1

2� ~a0 � 1� , �4:40�

and it is noted that the existence of a real ~a0 in eqn (4.40)1 is guaranteed in view of the fact ~a > 2 ~b . The
high wave number limit of the dispersion relation is investigated by allowing kh, kd41 in eqn (2.12)
and expanding all terms around the small-order quantity ~b . It is observed that in this limit the
dispersion relation comprises of two factors, namely

q
�0�
1 f

�
q
�0�
2

�2
ÿ q
�0�
2 f

�
q
�0�
1

�2
�O

�
~b
2
�
� 0, �4:41�

or

g~g
�
q
�0�2
2 ÿ q

�0�2
1

��
q
�0�
1 q
�0�
2 ÿ ~a0

�
~bC� ~a0� ÿ

( �����
~a0

p
w�1� ÿ w�0���������

2 ~a0

p
)

~bS� ~a0�

�
�����
~a0

p
w�0�S

ÿ
~b
�
ÿ g~g

�
q
�0�2
2 ÿ q

�0�2
1

��
q
�0�
1 q
�0�
2 � ~a0

�
~bC
ÿ

~b
�
�O

�
~b
2
�
, �4:42�

within which

w�0� � q
�0�
2

n
g
�
q
�0�2
1 � 1

�
� ~g � ~a0 ÿ 1�

o2
ÿ q
�0�
1

n
g
�
q
�0�2
2 � 1

�
� ~g� ~a0 ÿ 1�

o2
,

w�1� � 2~g
�
q
�0�
2

n
g
�
q
�0�2
1 � 1

�
� ~g � ~a0 ÿ 1�

o
ÿ q
�0�
1

n
g
�
q
�0�2
2 � 1

�
� ~g � ~a0 ÿ 1�

o�
,

w�2� � ~a1w
�1� � ~g2

�
q
�0�
2 ÿ q

�0�
1

�
,

C� ~a0�, S� ~a0�, C� ~b � and S� ~b� are trigonometric terms de®ned as

C� ~a0 � � cos 2
�����
~a0

p
kd, S� ~a0� � sin 2

�����
~a0

p
kd, C

ÿ
~b
�
� cos

 
~bkd�����

~a0

p
!
, S

ÿ
~b
�
� sin

 
~bkd�����

~a0

p
!
,

and q
�0�
1 and q

�0�
2 are order 1 terms which may be found by setting v � ~vS2

in eqn (2.6). To leading order,
eqn (4.41) corresponds to R� ~vS2

� � 0 and is therefore only a valid solution in the exceptional case in
which vR � ~vS2

. It is observed from eqn (4.42) that O� ~b �0O�1�S� ~b�, implying that S� ~b�4 0 as ~b 4 0,
and therefore

~b �
�����
~a0

p np
kd
�O�kd�ÿ2: �4:43�

On inserting eqn (4.43) into eqn (4.38)1, and making use of eqn (4.39), it is deduced that
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~rv2n � 2 ~b ÿ 2~g � 2~g1=2
ÿ
~a � ~g ÿ 2 ~b

�1=2��np
kd

�2� ~g ~a0

~a0 � 1

�
� � � � , n � 1, 2, 3, . . . : �4:44�

A higher-order expansion for the phase speed is obtained by setting

~b �
�����
~a0

p np
kd
� f3

�kd�2
�O�kd�ÿ3, �4:45�

from which it is inferred that

sin

 
~bkd�����

~a0

p
!
� � ÿ 1�n f3�����

~a0

p
kd
�O�kd�ÿ3, cos

 
~bkd�����

~a0

p
!
� � ÿ 1�n �O�kd�ÿ2, �4:46�

where f3 is to be determined. On making use of eqns (4.45) and (4.46) in eqn (4.42), and comparing
leading-order terms, it is deduced that

f3 � � ÿ 1�n
�����
~a0

p

2w�0�

( �����
~a0

p  
w�0�

~a0
ÿ 2w�1�

!
S� ~a0�

� 2g~g
�
q
�0�2
2 ÿ q

�0�2
1

�n�
q
�0�
1 q
�0�
2 ÿ ~a0

�
C� ~a0� ÿ � ÿ 1�n

�
~a0 � q

�0�
1 q
�0�
2

�o)
np: �4:47�

The expansion for the phase speed is then obtained to third order by making use of eqn (4.46), in
conjunction with eqns (4.45), (4.38)1 and (4.40), thus

~rv2n � 2 ~b ÿ 2~g � 2~g 1=2
ÿ
~a � ~g ÿ 2 ~b

�1=2��np
kd

�2 � ~g
~a 0 � 1

��
~a 0 � 2

�����
~a 0

p
f̂3

kd

�
� � � � , n � 1, 2, 3, . . . , �4:48�

and within which f̂3 � f3=np.
The asymptotic expansions obtained in eqn (4.48) are superimposed on numerical solutions in the

next ®gure. The material parameters are taken from Fig. 3 as this a�ords a situation in which the
limiting wave speed for the harmonics is ~vS2

. Fig. 7 shows that the oscillatory behaviour of the
harmonics in this limit are fully described by the trigonometric functions within the third-order term of
the asymptotic expansions (4.44). These third-order expansions provide reasonable agreement with the
numerical solutions even at a relatively low kh value.

Case 4: v 4 vS2
when 2b < a and rv2S2

< ~r ~v2L
The ®nal possible limiting wave speed arises when a > 2b and rv2S2

< ~r ~v2L. Numerically it is known that
there exists an analogous situation to that in the preceding section, in that both q1 and q2 are imaginary
and jq1j4 jq2j as kh, kd41, whilst p1 and p2 are either both real or complex conjugates. The limit
kh, kd41 is therefore examined by setting

q21 � ÿa� b, q22 � ÿaÿ b, a > 0, be 0, �4:49�
where

a � rv2 ÿ 2b
2g

, b �
�����������������������������������������������������ÿ
2bÿ rv2

�2 ÿ 4g
ÿ
aÿ rv2

�q
2g

, �4:50�

and b4 0 in the high wave number limit. Using eqn (2.7) with eqn (4.49) gives the analogous form of
eqns (4.39) and (4.40), namely
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a � a0 � a1b
2 �O�b4 �, �4:51�

where

a0 � ÿ1� g1=2�a� gÿ 2b�1=2, a1 � 1

2�a0 � 1� : �4:52�

On making use of the expansions shown in eqns (4.49) and (4.51) it is deduced that for high wave
number eqn (2.12) takes the form

4q̂1q̂2 f�q1� f�q2 �D1 �
n
q̂1 f�q2 �2 ÿ q̂2 f�q1�2

o
�
��D5 ÿ D2� sin

�
2
ÿ �����

a0
p � xb2

�
kh
	
� �D3 � D4� cos

�
2
ÿ �����

a0
p � xb2

�
kh
		

�
n
q̂1 f�q2�2�q̂2 f�q1�2

o��D2 � D5 �S�b� � �D4 ÿ D3 �C�b�
	
�O�b3�, �4:53�

within which q̂1 and q̂2 are approximated by

q̂1 �
�����
a0
p ÿ b

2
�����
a0
p � xb2 �O�b3�,

q̂2 �
�����
a0
p � b

2
�����
a0
p � xb2 �O�b3�, �4:54�

and x � �4a0a1 ÿ 1�=8a3=20 . It will be seen subsequently that the leading-order term of eqn (4.53) vanishes

Fig. 7. Comparison of numerical solutions with asymptotic expansions obtained for Case 3, see eqn (4.48). The same material par-

ameters from Fig. 3 are used
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in the limit, thus necessitating the inclusion of O�b2� terms in all expansions of the components of the
dispersion relation. From eqns (4.50)1 and (4.51) we have

rv2 � 2b� 2g
ÿ
a0 � a1b

2
�
�O�b4�: �4:55�

On inserting eqn (4.55) into the appropriate form of eqn (2.6), and after a little algebraic manipulation,
expansions for p1 and p2 are obtained, namely

p1 � p
�0�
1 � p

�2�
1 b2 �O�b4�, p2 � p

�0�
2 � p

�2�
2 b2 �O�b4�, �4:56�

where

p
�0�
1 �

�
l0 � m0

2~g

�1=2

, p
�2�
1 �

m2=2m0 ÿ 2ga1 ~r=r

2
ÿ
2~g
�1=2ÿ

l0 � m0
�1=2 ,

p
�0�
2 �

�
l0 ÿ m0

2~g

�1=2

, p
�2�
2 � ÿ

m2=2m0 � 2ga1 ~r=r

2
ÿ
2~g
�1=2ÿ

l0 ÿ m0
�1=2 ,

and within which

l0 � 2 ~b ÿ ~r
r
�2b� 2ga0�,

m0 �
n
4

�
~b
2 ÿ ~a ~g

�
�
ÿ
2 ~b ÿ l0

�2�4ÿ~g ÿ ~b
�ÿ
2 ~b ÿ l0

�o1=2
,

m2 � 4
~r
r
ga1
ÿ
2~g ÿ l0

�
:

Similar expansions for f �q� and ~f �p� are obtainable by making use of eqns (4.54) and (4.56), namely

f�q1�, f�q2� � f �0�2 f �1�b� f �2�b2 �O�b3 �,
~f �p1� � ~f

�0�
1 � ~f

�2�
1 b2 �O�b4 �, ~f �p2� � ~f

�0�
2 � ~f

�2�
2 b2 �O�b4�, �4:57�

where

f �0� � g�1ÿ a0� ÿ s2, f �1� � g, f �2� � ÿga1,

~f
�0�
1 � ~g � l0 � m0

2
ÿ s2, ~f

�2�
1 �

m2
4m0
ÿ ga1

~r
r
,

~f
�0�
2 � ~g � l0 ÿ m0

2
ÿ s2, ~f

�2�
2 � ÿ

m2
4m0
ÿ ga1

~r
r
:

Using eqns (4.54), (4.56) and (4.57), in conjunction with eqn (4.53) the dispersion relation in the high
wave number region may be cast in the form

A1 �
ÿ
A2 ÿA3C�a0� ÿA4S�a0�

�
b2 �

ÿ
A1 �A5b

2
�
C�b� �A6bS�b� �O�b3 �, �4:58�

where C�a0�, S�a0�, C�b� and S�b� are trigonometric terms which may be inferred from the de®nitions
given directly after eqn (4.42), and Am are order 1 quantities de®ned as
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A1 � a0D
�0�
1 f �0�

2

,

A2 �
�
2
�����
a0
p

xÿ 1

4a0

�
D�0�1 f �0�

2 � a0D
�2�
1 f �0�

2 � a0D
�0�
1

�
2f �0�f �2� ÿ f �1�

2
�
,

A3 �
(
2
�����
a0
p

f �0�f �1� � f �0�
2

2
�����
a0
p

)( �����
a0
p

D�1�2 ÿ
D�0�1

2
�����
a0
p

)
,

A4 �
(
2
�����
a0
p

f �0�f �1� � f �0�
2

2
�����
a0
p

)n�
p
�0�
1 p
�0�
2 ÿ a0

��
~f
�0�
1 ÿ ~f

�0�
2

�
f �1�

o
,

A5 � 2
�����
a0
p

D�0�1 f �0�
2

xÿ a0D
�2�
2 f �0�

2 ÿ D�1�3 f �0�
2

2

�D�0�1

n
a0 f

�1�2 � 2a0 f
�0�f �1� � f �0�f �1�

o
,

A6 � �����
a0
p

f �0�
2

f �1�
�
a0 � p

�0�
1 p
�0�
2

��
~f
�0�
2 ÿ ~f

�0�
1

�
: �4:59�

Within eqn (4.59) D�m�i represents the coe�cients of bm in Di, which may be obtained by inserting the
expansions given in eqns (4.54), (4.56) and (4.57) into eqn (2.13), dividing throughout by C1 C2

~C1
~C2,

and replacing the resulting hyperbolic tangents with unity, thus

D�0�1 � p
�0�
2

�
f �0� ÿ ~f

�0�
1

�2
ÿp�0�1

�
f �0� ÿ ~f

�0�
2

�2
,

D�2�1 � 2p
�0�
1

�
f �0� ÿ ~f

�0�
2

��
~f
�2�
2 ÿ f �2�

�
� 2p

�0�
2

�
f �0� ÿ ~f

�0�
1

��
f �2� ÿ ~f

�2�
1

�
�f �1�2

�
p
�0�
1 ÿ p

�0�
2

�
� p
�2�
2

�
f �0� ÿ ~f

�0�
1

�2
ÿ p
�2�
1

�
f �0� ÿ ~f

�2�
2

�2
,

D�1�2 � 2f �1�
n
p
�0�
1

�
f �0� ÿ ~f

�0�
2

�
ÿ p
�0�
2

�
f �0� ÿ ~f

�0�
1

�o
,

D�2�2 � 2f �1�
2
�
p
�0�
1 ÿ p

�0�
2

�
ÿ D�2�1 : �4:60�

It is readily deduced from eqn (4.58) that to leading order�
1ÿ cos

bkh�����
a0
p

�
0O�b� sin

bkh�����
a0
p , �4:61�

thus implying that cos �bkh= �����
a0
p �4 1 as kh, kd41 and therefore,

b � 2
�����
a0
p np

kh
�O�kh�ÿ2: �4:62�

A second-order approximation to the phase speed may be found by inserting eqn (4.62) into eqn (4.55),
to obtain

ru2n � 2bÿ 2g� 2g1=2�a� gÿ 2b�1=2�
�

ga0
a0 � 1

��
np
kh

�2

� � � � : �4:63�
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We then seek a higher-order expansion by setting

b � 2
�����
a0
p np

kh
� f4

�kh�2
�O�kh�ÿ3 �4:64�

from which it is deduced that

sin

�
bkh�����
a0
p

�
� f4�����

a0
p

kh
�O�kh�ÿ3, cos

�
bkh�����
a0
p

�
� 1ÿ f2

4

2a0�kh�2
�O�kh�ÿ4, �4:65�

where f4 is to be determined and it is noted that it is now necessary to include an O�kh�ÿ2 term in the
expansion (4.65)2 due to the vanishing of the leading order term prior to the derivation of eqn (4.58).
Inserting eqns (4.64) and (4.65) into eqn (4.58) and comparing like powers of kh reveals that the equation
is identically zero at leading order, the next order yielding the following quadratic equation for f4

A1

2a0
f2
4 ÿ 2A6npf4 � 4a0n

2p2
�
A2 ÿA5 ÿA3C�a0� ÿA4S�a0�

	 � 0: �4:66�

It is interesting to note that in this case a quadratic equation for f4 is obtained, whilst in the previous
three cases a single value for f1, f2 and f3 was obtained. However, it has been veri®ed numerically that
for particular values of n the two solutions indicated in eqn (4.66) correspond to two distinct branches of
the dispersion relation. This is, perhaps, not too surprising as we have seen in Fig. 4 that the harmonics
group together to form distinct pairs in the high wave number region. Indeed the second-order
approximation to the phase speed in eqn (4.63) gives asymptotic solutions which pass between adjacent
pairs of harmonics, thus in order to obtain accurate asymptotic solutions the expansion must be taken to
at least third-order. Moreover in the ®rst two cases a reasonable approximation may be found from the
second-order expansion and although the second-order expansion in the third case cannot describe the
oscillatory behaviour at least an approximation for each harmonics is obtained. Eqn (4.66) may
therefore be used, in conjunction with eqns (4.64) and (4.50)), to obtain

rv2n �

8>>>>>><>>>>>>:
rv2S2
�
�
n� 1

2

�2 � p
kh

�2� 4g
a0 � 1

�(
a0 �

�����
a0
p

f̂ÿ4
kh

)
� � � � n odd

rv2S2
�
�

np
2kh

�2� 4g
a0 � 1

�(
a0 �

�����
a0
p

f̂�4
kh

)
� � � � n even

, �4:67�

f̂4 � f4=np, f
�
4 and fÿ4 representing solutions of eqn (4.66), indicating the positive and negative square

root associated with the discriminant, respectively. It is worth noting that the asymptotic expansions
indicated in eqn (4.67) also arise in the analogous ¯exural wave expansions, see Rogerson and Sandiford
(1997, eqn (4.68)). This arises for the same reason as that given in Case 1.

The asymptotic expansions obtained in eqn (4.67) are superimposed upon numerical solutions in Fig.
8. The material parameters used have been taken from Fig. 4. The asymptotic expansions again give
good agreement with the numerical solutions and describe the oscillatory behaviour of the harmonics in
the moderate and high wave number regions.

5. Surface wave-like behaviour of the higher harmonics

The possibility of surface wave-like behaviour arising from the combined contribution of higher
harmonics has been indicated from the numerical results obtained in Fig. 2. Such a possibility will arise
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when the high wave number limit of the harmonics is associated with the inner core and a real value of
the surface wave speed exists such that vR > ~vL. This is investigated further here by examining the
eigenfunctions U and V as the wave speed of a particular harmonic in such a situation passes through
the surface wave speed value. For any root of the dispersion relation it is possible to use the
homogeneous boundary and continuity conditions to obtain expressions for U and V in terms of an
arbitrary costant. From these solutions, the variation of displacement throughout the laminate may be
obtained.

Fig. 9 and 10 show the normalised in-plane (Û) and out-plane (V̂) displacements associated with the
fourth harmonic of Fig. 2 as it passes through the surface wave speed value at various values of scaled
wave number. The width of the laminate has been scaled so that the upper and lower surfaces are at
x2 �22 and the interfaces are at x2 �21, thus representing all cases in which the ratio of ply
thickness is such d/h= 1. Four values of scaled wave number have been chosen in order to show the
behaviour of the in-plane and out-plane displacements. Due to the extremely sharp ¯attening of the
dispersion curves around vR in Fig. 2, the increment between successive values of kh is small. For the
®rst value used, kh = 12.080, there is no clear localisation of displacement at any point within the
laminate, with the displacement at each surface small in relation to that in the inner core. The nature of
the displacement is clearly sinusoidal. When the wave number is increased slightly to kh= 12.083, the
graph changes signi®cantly, in that the displacement is clearly localised at each surface, with only small
sinusoidal variation in the inner core. This sinusoidal variation decreases further as the wave number is
increased to kh = 12.085. The displacement in the outer layers �x2 Eÿ 1 and x2e1� is indistinguishable

Fig. 8. Comparison of numerical solutions with asymptotic expansions obtained for Case 4, see eqn (4.67). The same material

parameters from Fig. 4 are used.

G.A. Rogerson, K.J. Sandiford / International Journal of Solids and Structures 37 (2000) 2059±2087 2081



from that obtained using the previous value of kh, with the associated curves overlapping in this region.
The ®nal value of kh exhibits classic surface wave behaviour, with strong localisation of displacement at
each free surface and no discernible displacement in the inner core. This suggests that a surface wave
front will indeed be formed from the combined e�ects of the harmonics as they pass through the value
of vR. In addition, the nature of the displacement associated with a particular harmonic can change
dramatically for small changes in the wave number (e.g. as small as 0.003 in Figs. 9 and 10). It is worth
noting that for the four values of kh used here the wave speed in each case varies only at the ®fth
decimal place.

6. Comparison of ¯exural and extensional wave results

This paper is concluded with a short section presenting some closing remarks on the results obtained
numerically and analytically for the two dispersion relations associated with ¯exural and extensional
waves. The close similarity of the two dispersion relations, as is to be expected, gives rise to similar
solutions which di�er in small but signi®cant ways. A cursory comparison of the extensional dispersion
relation (2.12) with the appropriate ¯exural dispersion relation, see Rogerson and Sandiford (1997, eqn
(3.18)), reveals that they only di�er in a subtle permutation of the hyperbolic terms associated with the
inner core, namely that ~Cm $ ~Sm. This has the e�ect that the two dispersion relations will act
identically in the high wave regime when p1 and p2 are real or complex conjugates (i.e. when the limiting
behaviour of tanh kpmd is well de®ned). This situation arises in the asymptotic expansions for the high

Fig. 9. Scaled eigenfunction Û against depth of the laminate for the fourth harmonic of Fig. 2, showing the change from sinusoidal

displacement to surface wave-like behaviour as the phase speed passes through vR.
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wave number limit of the dispersion relations in Cases 1 and 4 (v4 vS1
and v4 vS2

). Conversely, one
should expect the two dispersion relations to behave di�erently when this is not the case. This is
examined in Figs. 11±14, which present plots of the numerical solutions for both ¯exural and
extensional waves superimposed upon one another for each of the four cases outlined in the asymptotic
expansions for the high wave limit.

The dispersion curves for Case 1 (v4 vS1
) are shown in Fig. 11, and are generated using the material

parameters from Fig. 1. The ®rst ®fteen branches from each of the ¯exural and extensional modes are
shown. It appears that in this case the ¯exural and extensional modes merge together below a certain
value of the phase speed. This behaviour di�ers signi®cantly than that observed for a single layer plate
in the same limit (v4 vS1

), in which the ¯exural and extensional modes interlace and do not coalesce,
see Rogerson (1997). For high kh this threshold value corresponds to the shear wave speed in the inner
core, ~vS1

� 2:0. Below this value p1 and p2 take on real values and hence, as the limiting behaviour of
tanh kpmd is well de®ned, the two dispersion relations behave similarly. Above the threshold value one
of p1 and p2 is imaginary, the other real, and the di�erence in the two dispersion relations between
¯exural and extensional modes plays a signi®cant part due to the existence of trigonometrical terms.

Fig. 12 shows numerical solutions for Case 2 (v4 ~vS1
) generated using the parameters in Fig. 2. The

®rst ®fteen branches from each ®gure are used. From the ®gure it is clear that the ¯exural and
extensional modes alternate, with the fundamental mode from the ¯exural solutions having lowest wave
speed. This situation mirrors the behaviour of ¯exural and extensional modes in the single plate
problem, see Rogerson (1997). Only the fundamental modes retain ®nite wave speed as kh4 0 and all
harmonics asymptote to the shear wave speed vS1

.

Fig. 10. Scaled eigenfunction V̂ against depth of the laminate for the fourth harmonic of Fig. 2, showing the change from sinusoi-

dal displacement to surface wave-like behaviour as the phase speed passes throughuR.
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Fig. 11. Comparison of ¯exural and extensional solutions for Case 1: v4 vS1
.

Fig. 12. Comparison of ¯exural and extensional solutions for Case 2: v4 �vS1
.
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Fig. 13. Comparison of ¯exural and extensional solutions for Case 3: v4 �vS2
.

Fig. 14. Comparison of ¯exural and extensional solutions for Case 4: v4 vS2
.

G.A. Rogerson, K.J. Sandiford / International Journal of Solids and Structures 37 (2000) 2059±2087 2085



Case 3, v4 ~vS2
is presented in the next plot. Fig. 13 shows the ®rst ®fteen branches of the ¯exural

and extensional dispersion relations generated from the parameters used in Fig. 3. The behaviour of the
¯exural and extensional modes is similar to that in Fig. 11 for phase speed greater than ~vS1

� 1:876, in
that the ¯exural and extensional modes alternate. However, below this value of the phase speed, while
the mode still alternate, it is evident that the extensional and ¯exural modes associated with a particular
harmonic number cross each other due to the sinusoidal variation. It is interesting to note that for each
of the ghost lines associated with the shear wave speeds vS1

and ~vS1
the harmonics associated with the

¯exural solutions asymptote to the appropriate value quicker than the extensional harmonics.
The ®nal case (v4 ~vS2

) is compared in Fig. 14, which is generated from the material parameters used
in Fig. 4. The behaviour of the two dispersion curves for ¯exural and extensional waves is more
complicated in this case. For phase speeds higher than v � vS1

(= 2.012) the ¯exural and extensional
modes alternate. Below this value the branches associated with ¯exural and extensional modes begin to
coalesce, with all branches having done so at a low wave number. This is to be expected as within this
region p1 and p2 take on complex conjugate values below v=2.012 and thus the di�erence between the
dispersion relations is negligible for high wave number.

Appendix

For the distance x2 ÿ ~x � h, say, the components of the propagator matrix P(h ) are given by

P11 � q1q2
�
f�q2�C2 ÿ f�q1�C1

	
mÿ1, P12 � q1q2

�
q1f�q2 �S1 ÿ q2f�q1�S2

	
mÿ1,

P13 � q1q2
�
q2S2 ÿ q1S1

	
mÿ1, P14 � q1q2fC1 ÿ C2gmÿ1,

P21 �
�
q1f�q2�S2 ÿ q2f�q1�S1

	
mÿ1, P22 � q1q2

�
f�q2�C1 ÿ f�q1�C2

	
mÿ1,

P23 � ÿP14, P24 �
�
q2S1 ÿ q1S2

	
mÿ1,

P31 �
n
q1f�q2�2S2 ÿ q2f�q1�2S1

o
mÿ1, P32 � q1q2f�q1�f�q2�fC1 ÿ C2gmÿ1,

P33 � P11, P34 �
�
q2f�q1�S1 ÿ q1f�q2�S2

	
mÿ1,

P41 � q1q2f�q1�f�q2�fC2 ÿ C1gmÿ1, P42 � q1q2

n
q1f�q2�2S1 ÿ q2f�q1�2S2

o
mÿ1,

P43 � q1q2
�
q2f�q1�S2 ÿ q1f�q2�S1

	
mÿ1, P44 � P22,

where Sm � sinh �kqmh� and Cm � cosh�kqmh�.

References

Dowaikh, M.A., Ogden, R.W., 1990. On surface waves and deformations in a pre-stressed incompressible elastic solid. IMA J. of

Appl. Math. 44, 261±284.

Dowaikh, M.A., Ogden, R.W., 1991. Interfacial waves and deformations in pre-stressed elastic media. Proc. R. Soc. Lond. A. 433,

313±328.

Flavin, J.N., 1963. Surface waves in pre-stressed Mooney material. Q. J. Mech. Appl. Mech. 16, 441±449.

Gilbert, F., Backus, G.E., 1966. Propagator matrices in elastic wave and vibration problems. Geophysics 31, 326±332.

Hayes, M.A., Rivlin, R.S., 1961. Surface waves in deformed elastic materials. Arch. Ration. Mech. Anal. 8, 358±380.

Ogden, R.W., Roxburgh, D.G., 1993. The e�ect of pre-stress on the vibration and stability of elastic plates. Int. J. Eng. Sci. 30,

1611±1639.

G.A. Rogerson, K.J. Sandiford / International Journal of Solids and Structures 37 (2000) 2059±20872086



Rogerson, G.A., 1997. Some asymptotic expansions of the dispersion relation for an incompressible elastic plate. Int. J. Solids

Structures 34 (22), 2785±2802.

Rogerson, G.A., Fu, Y.B., 1995. An asymptotic analysis of the dispersion relation of a pre-stressed incompressible elastic plate.

Acta Mechanica 111, 59±77.

Rogerson, G.A., Sandiford, K.J., 1996. On small amplitude vibrations of pre-stresses laminates. Int. J. Eng. Sci. 34 (8), 853±872.

Rogerson, G.A., Sandiford, K.J., 1997. Flexural waves in incompressible pre-stressed elastic composites. Q. J. Mech. Appl. Math.

50 (4), 597±624.

G.A. Rogerson, K.J. Sandiford / International Journal of Solids and Structures 37 (2000) 2059±2087 2087


